(株) ポート電子

AI 打音チェッカー PDC-100A 付属アプリケーション 操作説明書 ver. 1.0

更新年月日	備考
2017.08	初版発行 ver. 1.0

1. 動作環境

オペレーティングシステム Microsoft Windows7 SP1 Microsoft Windows8.1 Microsoft Windows10 Desktop

上記の日本語環境が動作する事

2. 通信環境

AI打音チェッカー PDC-100Aは、Bluetoothを利用して付属のPCアプリケーションと 通信を行います。アプリケーションの利用には、Bluetooth 4.0をサポートする PC標準のBluetoothポート又はUSBポートで使用するBluetooth機器が必要です。

3. AI打音チェッカー 付属アプリケーションのインストール手順

- (1) AI打音チェッカーのインストールCDを、ドライブに挿入します。
- (2) CD内のSETUPx32 (32bit OS) 又はSETUPx32 (64bit OS) フォルダにある SETUP. EXE を起動します。
- (3) セットアップウィザードの指示に従い、インストールを実行します。
- (4) インストールが完了すると、デスクトップ上にショートカットが作成され、 プログラムメニューに 打音チェッカー が追加されます。

4. Bluetooth ペアリング設定

AI 打音チェッカーでは、Windows PC マシンと Bluetooth 通信を行います。 Bluetooth 通信を有効にするには、AI 打音チェッカーを PC 側から認識しペアリング設定をして COM (仮想シリアルポート) として利用します。 AI 打音チェッカーの Bluetooth ペアリング設定は、アプリケーションのインストール前に設定してください。

最初に実行すれば、次回以降は自動接続になります。

<Windows7 での Bluetooth 設定手順>

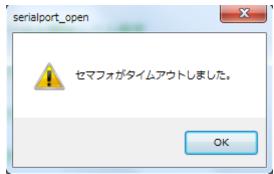
- (1) AI 打音チェッカーの電源を入れます。
- (2) 表示部の点滅が終了するのを確認します。
- (3) スタート → コントロールパネルを開きます。
- (4) コントロールパネルの検索ボックスで、「Bluetooth」と入力します。
- (5) Bluetooth デバイスの追加をクリックします。
- (6) Bluetooth デバイスの一覧に、RNBT-**** (AI 打音チェッカーの表示名。 下 4 桁は固有の MAC アドレス) が表示されるのを待ちます。
- (7) ステータスが、ペアリング準備完了になっているのを確認します。
- (8) RNBT-****(AI 打音チェッカーの表示名)をクリックしペアリングします。
- (9) ペアリング時のパスコードが表示されるので OK をクリックします。
- (10) コントロールパネルの Bluetooth 設定の変更をクリックします。
- (11) Bluetooth 設定の COM ポートタブを選択します。
- (12) RNBT-**** 'RNI-SPP' と表示されている COM 番号を記録します。 記録した COM 番号は、PC 設定アプリケーションを最初に起動した時に ポート番号を設定します。


<Windows10 での Bluetooth ペアリング設定手順>

- (1) AI 打音チェッカーの電源を入れます。
- (2) 表示部の点滅が終了するのを確認します。
- (3) Windows メニューから、システム設定 → Bluetooth 設定を開きます。
- (4) Bluetooth を ON にします。
- (5) Bluetooth デバイスの一覧に、RNBT-**** (AI 打音チェッカーの表示名。 下 4 桁は固有の MAC アドレス) が表示されるのを待ちます。
- (6) ステータスが、ペアリング準備完了になっているのを確認します。
- (7) RNBT-****(AI 打音チェッカーの表示名) をクリックしペアリングします。
- (8) ペアリング時のパスコードが表示されるので OK をクリックします。
- (9) 関連設定のその他の Bluetooth オプションをクリックします。
- (10) Bluetooth 設定の COM ポートタブを選択します。
- (11) RNBT-**** 'RNI-SPP' と表示されている COM 番号を記録します。記録した COM 番号は、PC 設定アプリケーション初期設定時にポート番号で設定します。

アプリケーション操作中には、AI 打音チェッカーの電源を OFF しないで下さい。 電源を OFF した場合、Bluetooth 通信が無効になっている場合がありますので アプリケーションを終了し、AI 打音チェッカーの電源を再投入してからご使用下さい。

5. アプリケーションの起動


デスクトップ上にある、「打音チェッカー」のショートカット又は、 スタート→プログラム→ PDC-100Aを選択するとアプリケーションが起動します。 *起動時する前に、AI打音チェッカーの電源が入っている事を確認します。

6. シリアルポートの設定(重要:初期設定が必要な項目です)

付属アプリケーションを起動時に、Bluetooth の仮想シリアル接続を有効にします。 Bluetooth 機器の接続がない(ペアリングしていない状態も含む)場合、 以下のような警告メッセージが表示されます。

<Bluetooth 未接続時の表示>

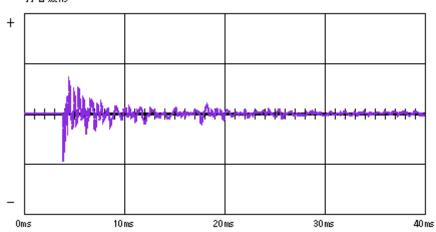
ペアリング設定を行った直後で、シリアルポートの設定を行っていない場合には メニューからアプリケーション → シリアルポートの設定でペアリングした シリアルポートの情報を設定します。

<ポート設定ダイアログ>

<シリアルポート設定の項目>

項目	備考
COM	現在、PC上にある COM ポーの一覧が表示されます。
	ペアリング設定で記録したCOM番号を指定します。
伝送速度	ボーレートを設定します。単位:bps
	9600、19200、38400、76800、115200 から指定します。
パリティ	水平パリティを設定します。
	ODD、EVEN から選択します。
データビット	データビット数を設定します。
	7、8から選択します。
ストップビット	ストップビット数を設定します。
	1、2から選択します

項目を編集し、OKボタンをクリックすると、Bluetooth の仮想シリアルポートを 有効にしてダイアログを終了します。


次回のアプリケーション起動時からは、Bluetooth は自動起動されます。

COM番号を確認するには、4. Bluetoothペアリング設定を参照して下さい。

7. メイン画面 打音波形グラフ

<打音波形グラフ>

測定データフォルダにある、マイク入力の打音データ波形 (入力電圧 A/D 値) を表示するグラフです。縦軸が± 1 V の電圧で中心点をゼロとしています。 横軸は時間 (ミリ秒) で最大 40ms になります。 縦軸、横軸共に固定レンジになっています。

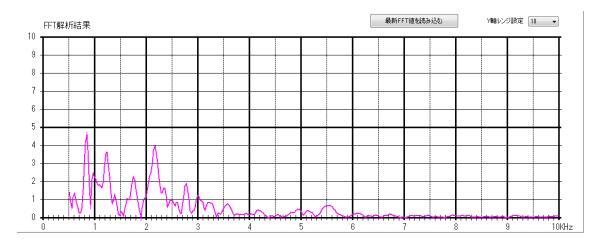
8. メイン画面 測定結果表示等

<測定結果表示欄>

測定データファイルフォルダ(打音波形データ又は FFT 解結果)から データが読み込まれ表示されます。

打音波形データと FFT 解析結果の表示の切り替えは、グリッド上部の ラジオボタンの選択で行います。

打音波形のデータ系列は、順に


ID (行番号)、Time (時間: ms)、Value (電圧値) となります。 FFT 解析のデータ系列は、

ID (行番号)、Freq (周波数: Hz)、Value (POWER 値) となります。

判定結果には、OK 又は NG、OVF、判定不能のいずれかのステータスが表示されます。X 及び Y 欄には、計測時の X-Y ポジションが表記されます。

9. メイン画面 測定結果表示等

<FFT 解析結果グラフ>

FFT 解析結果 (周波数スペクトラム解析) を表示するグラフです。 縦軸は POWER 値、横軸が周波数になります。

縦軸は表示レンジの変更が可能となっています。 (10、20、50、100、200、500、1000の7段階) 横軸は周波数で、0~10KHzの固定レンジになっています。

FFT 解析結果を読み込むボタンを押すと、AI 打音チェッカーから最新のFFT 解析結果が読み込まれグラフに表示されます。

10. メイン画面 測定データ格納フォルダ

<測定データ格納フォルダー覧>

測定データ格納フォルダ	参照
C:¥打音検査¥20170601000002	
サブフォルダ一覧	
110137 132259 163859	
185137	

打音チェッカーから、ローカルHDにダウンロードした測定データ格納フォルダを指定します。参照ボタンを押すと、フォルダ選択ダイアログが起動しますので、測定データの格納されているローカルHDのフォルダを指定すると測定データ格納フォルダ欄に対象フォルダのフルパスが表示されます。サブフォルダリストには、指定した測定データ格納フォルダ直下にあるサブフォルダの一覧が表示されます。

このサブフォルダリストを選択すると、そのフォルダ内で測定データファイル (打音波形ファイル等)を探し、見つければ自動で読み込みが開始され、 画面上にデータが表示されます。

また、サブフォルダリストをダブルクリックすると、選択しているサブフォルダのフルパスが測定データ格納フォルダ欄に反映されます。

C:¥打音データデータ格納フォルダTEST01保存フォルダ名20170101日付フォルダ150001この時間フォルダを選択すると150106画面にグラフや測定データがまれる150307読み込まれる

11. メイン画面 メニュー

メイン画面上部にメニューバーが表示されます。 以下はメニュー構成です。

アプリケーション ・・・ シリアルポートの設定

・・・ アプリケーションの終了

教師データ ・・・ 教師データ 読み込み

・・・ 教師データ 書き込み

本体パラメータ設定 本体 SD メモリ管理 本体カレンダー&時計更新 Ver. 情報

12. メイン画面 メニュー シリアルポートの設定

6. シリアルポートの設定を参照

13. メイン画面 メニュー アプリケーションの終了

今、実行されている処理を中止し、アプリケーションを終了します。

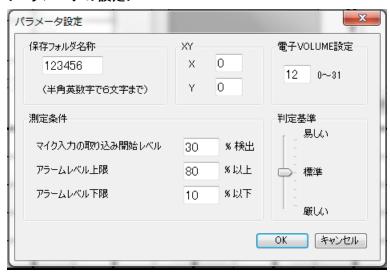
14. メイン画面 メニュー 教師データの読み込み

AI 打音チェッカー本体から Bluetooth 通信を利用して、教師データを読み込みローカル HD の指定フォルダに教師データファイルを作成します。 メニューをクリックすると、フォルダ選択ダイアログが起動され 教師データファイルの保存先フォルダを指定します。

AI 打音チェッカー本体に登録されている現在の教師データ数を問い合わせ、 件数分のデータが読み出されます。

個々の教師データは FFT 解析結果ファイルと同じフォーマットで保存され CSV 形式になります。

15. メイン画面 メニュー 教師データの書き込み


AI 打音チェッカー本体へ Bluetooth 通信を利用して、教師データを書き込みします。 メニューをクリックすると、フォルダ選択ダイアログが起動され 教師データファイルの参照先フォルダを指定します。

最初に、AI 打音チェッカー本体に教師データクリア命令を送り、教師データを 初期化します。 注:全ての教師データが破棄されます。

指定されたフォルダにある、教師データ又は FFT 解析結果ファイルを調べ ファイルからデータを読み出し、順次本体に教師データを送信します。 AI 打音チェッカーの本体には、最大99件までの教師データを登録又は書き込みを する事が可能です。

16. メイン画面 メニュー パラメータの設定

<パラメータの設定>

打音チェッカーのパラメータを設定します。

ダイアログ起動時に現在の打音チェッカーからパラメータを読み込みます。 OK ボタンを押すと、現在のパラメータが打音チェッカーに送信されます。 起動時に打音チェッカーと PC がペアリングされている必要があります。

パラメータ項目	備考
保存フォルダ名称	打音チェッカーに内臓さている SD メモリに
	フォルダが作成され、計測データが保存されます。
	その保存フォルダの名称を設定します。
	使用できるのは半角英数字で6文字まで。
X-Y ポジション	検査位置の X-Y ポジションを設定します。
	それぞれ、00~99 まで設定可能です。
	計測位置の特定に使用されます。
	XY 値はファイル名の一部にも使用されます。
電子 VOLUME 設定	マイク入力の信号を増幅又は減衰させる VOLUME
	の値を設定します。00~31 まで設定可能です。
	数値が少ない程、信号レベルが減衰します。
	数値が大きくなるほど、信号レベルが増幅します。
マイク入力の	測定データの記録を始める音量レベルを設定
取り込み開始レベル	します。入カレンジに対し、どの程度の音量が
(単位:%)	検出されたら測定を始めるレベルを、%で設定
	します。00 から 99 まで設定可能です。
アラームレベル上限	取り込み開始以後、マイク入力信号のアラーム
(単位:%)	レベル上限値を%で設定します。
	上限値以上を検出するとアラーム判定になります。
	00~99 まで設定可能です。
アラームレベル下限	取り込み開始以後、マイク入力信号のアラーム
(単位:%)	レベル下限値を%で設定します。
	下限値以下を検出するとアラーム判定になります。
	00~99 まで設定可能です。
判定基準	機械学習の AI 判定におけるレベルを設定します。
	厳しいから易しいまでの10段階ですが、標準の一致率判
	定の閾値を 2.0 として、0.0 (厳しい) ~4.0 (優しい) を
	10 段階で区切り設定します。

17. メイン画面 メニュー 本体SDメモリ管理

打音チェッカー内の SD メモリ管理を行います。

左側のリストが打音チェッカー内の SD メモリのフォルダ及びファイルの構成です。 右側のリストはローカル HD にある測定データフォルダ内のフォルダ及び ファイルの構成です。

フォルダとファイルはノード形式のアイコンで表示されます。 ノードがフォルダの場合には、ダブルクリックをする事でその直下の ファイルおよびフォルダの構成が表示されます。

<SDメモリ 情報を更新>

SD メモリ 情報を更新 ボタンをクリックすると、打音チェッカー内にある SD メモリのファイル及びフォルダ構成を取得し、左側リストに表示します。

<SD メモリ フォルダを削除>

SD メモリ フォルダを削除 ボタンをクリックすると、確認メッセージが表示され、OK を押すと左側リストで指定しているフォルダを削除します。なお、一度削除されたフォルダは復元しません。

<SD メモリ フォーマット>

SD メモリ フォーマット ボタンをクリックすると、確認メッセージが表示され、OK を押すと SD メモリをフォーマット (初期化) します。 初期化は数十秒かかり、 SD メモリ内のフォルダやファイルは全て 初期化されます。

<ローカル HD に Download>

ローカル HD に Download ボタンをクリックすると、確認メッセージが表示され、OK を押すと SD メモリのフォルダとファイルを Download します。まず、SD メモリ側のフォルダ構成を調べ、ローカル HD 側に存在しない場合ローカル HD 側にフォルダを作成します。その下のサブフォルダも同様に調べ同様に繰り返します。ファイルの存在を確認した場合、ファイルデータをDownload します。

これは、SDメモリのフォルダ及びファイル構成を調べ、同様のフォルダ及びファイルがローカル HD 側に存在するかを確認し、なければ差分をとって作成及び Download します。ただし、ファイルは名称が調査の対象で、データの一致は行っていません。同じフォルダ構成内で同じ名称のファイルがローカルHD 側に存在した場合、同一データとしてパスされます。

<ローカルフォルダ選択>

ローカルフォルダ選択 ボタンをクリックすると、フォルダ選択ダイアログが 表示されます。OK を押すと選択したフォルダが Download 先のフォルダに なります。

18. メイン画面 メニュー 本体カレンダー&時計更新

AI 打音チェッカーは内部にカレンダー機能を有しており、このメニューを 選択すると、PC 又はタブレットの現ローカルタイムを打音チェッカーに送り 更新します。

19. メイン画面 メニュー Ver.情報

アプリケーションのバージョン情報のダイアログを起動します。